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Acronyms

CDR Critical Design Review (CDR)

COTS Commercial Off The Shelf (COTS)

EEE Electrical, Electronic, and Electromechanical (EEE)
GCRs Galactic Cosmic Rays (GCRS)

JPL Jet Propulsion Laboratories (JPL)

NEPP NASA Electronic Parts and Packaging (NEPP)

NOVICE Numerical Optimizations, Visualizations, and Integrations on
CAD/CSG Edifices (NOVICE)

NSREC Nuclear and Space Radiation Effects Conference (NSREC)

RHA Radiation Hardness Assurance (RHA)
SAA South Atlantic Anomaly
SEE Single Event Effect (SEE)

SEECA Single Event Effects Criticality Analysis (SEECA)
SEEs Single Event Effects (SEES)
SMEs Subject Matter Experts (SMES)
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Abstract

 Radiation Hardness Assurance (RHA) is the process of ensuring space
system performance in the presence of a space radiation environment.

* Herein, we present an updated NASA methodology for RHA focusing on
content, deliverables and timeframes.
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History

* In 1998, LaBel et al. presented at the Nuclear and
Space Radiation Effects Conference (NSREC), a
paper entitled:

— “Emerging Radiation Hardness Assurance (RHA) issues:
A NASA approach for space flight programs” [1].

* In that paper, a multi-step approach was proposed:

— Define the hazard,

— Evaluate the hazard,

— Define requirements,

— Evaluate device usage,

— “Engineer” with designers, and,
— lterate Process as necessary.

* This is the essence of the considerations for an
RHA plan.

[1] K.A. LaBel, A.H. Johnston, J.L. Barth, R.A. Reed, C.E. Barnes, “Emerging Radiation
Hardness Assurance (RHA) issues: A NASA approach for space flight programs,”
IEEE Trans. Nucl. Sci., pp. 2727-2736, Dec. 1998.
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Objectives/Limitations of this Talk

* Revisit the 1998 approach and update the general
philosophy:
— Provide more codified details focusing on general
deliverables and occurrence timeframes.

 Limitations

— The 1998 paper provided general RHA process guidance,
while this paper limits itself to RHA plan development and
responsibilities.

— We note that this method is focused on electrical, electronic,
and electromechanical (EEE) parts and their performance in
space. Material radiation assurance is deemed out of scope
for this discussion
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RHA and Responsibilities

 RHA includes areas such as ionizing radiation
environment modeling, spacecraft shielding
analysis, as well as application analysis, radiation
effects testing, and radiation performance

evaluation of EEE parts.

— EEE parts are deemed to include integrated circuits, discrete
devices, as well as optical devices and systems.

« All spaceflight projects/payloads are required to
develop an appropriate RHA plan.

- RHA Is deemed to be the responsibility of the
cognizant lead radiation engineer assigned to the
project/payload.

— Subject matter experts (SMEs), such as an environment
specialist or technologist or test engineer, may provide
additional support.
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Define the Hazard

« Space radiation environment exposure (external

to the spacecraft):

— Deliverable: Mission Space Radiation Environment
Exposure —to be completed during Mission Phase A
(concept and technology development).

* Included information (protons, electrons, galactic cosmic
rays (GCRs), solar particle events):
— Lifetime exposures (e.g., mission fluence),
— Nominal exposures (e.g., average flux or fluence), and

— Worst case event exposures or appropriate statistical models
(e.g., solar event, worst case pass through South Atlantic

Anomaly (SAA)).
» Use of industry or NASA standard models as appropriate
for the mission profile.
« Study must be developed for specific mission orbital
parameters and timeline.

— If the spacecraft/payload contains a radioactive source,
such as those used for power/propulsion, additional
analysis for the induced environment shall be
performed.
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Evaluate the Hazard

 Transport of space radiation environment (internal to

the spacecraft):

— Initially performed at a high level (i.e., simple dose-depth
analysis), but may require a more detailed analysis of
spacecraft geometry.

— Deliverable: Mission Space Radiation Analysis —to be
completed no later than Mission Phase B (preliminary design)
with top level analysis (e.g., dose-depth curve) during Phase A.
Consideration for earlier completion is advised.

« Use of industry standard modeling tools such as NOVICE [2].

* lterative analyses may be performed based on updated
spacecraft designs or if additional information is

received.

— Updates may also occur in later Mission Phases based on

design changes (final design, integration and test, and

o) perati on S) ) [2] Experimental and Mathematical Physics Consultants, "NOVICE",
http://www.empc.com/novice.php
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Define Requirements

* Requirements definition and specifications

— Deliverable: Mission Space Radiation Requirements and
Specifications —to be completed during Mission Phase
A (concept and technology development, but may be
updated during later phases).
 This may include a mix of top-down requirements such as
system availability as well as EEE parts specific

requirement levels such as a radiation tolerance minimum
requirement.

 An example reference of a single event effects (SEE)
specification may be viewed at “Single Event Effects
(SEEs) Specification Approach” [3].
— We note that radiation requirements and specification
are often integrated into larger function documents such
as systems requirements.

[3] Kenneth A. LaBel, “Single Event Effects (SEEs) Specification Approach,”
http://radhome.gsfc.nasa.qov/radhome/papers/SEEspec.pdf, Sept. 2013.
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Evaluate Device Usage and
“Engineer” with Designers

« EEE parts list and electrical design review —to be
performed during Mission Phases B-C (preliminary — final
design).

— Completion by Mission Critical Design Review (CDR):
« Some missions may require earlier deadlines depending on risk
tolerance and completion of as-designed parts lists.
— This includes reviewing areas such as:
« Radiation tolerance/susceptibility including SEE rate predictions,
« Mitigation approaches ,

« Risk identification and application analysis,
— This may include a single event effects criticality analysis (SEECA). [4]
« Test requirements, test recommendations, test performance, and
risk recommendations, and,

« Design recommendations (when applicable).

- Deliverable: Database of EEE components with radiation
test data, analysis, and mitigation information. Test
recommendations (and results/reports) are included.

[4] Kenneth A. LaBel, "SEECA Single Event Effect Criticality Analysis," http://nepp.nasa.gov/DocUploads/6D728AF0-2817-4530-
97555B6DCB26D083/seecai.pdf, Feb. 1996. Note that the Mr. LaBel is acting point of contact: original work was led by Dr. Michele Gates.
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lterate Process as Necessary

Iteration of above analyses as
designs/component selections change.

This may occur for various reasons:
— Movement of boxes/systems on a spacecraft

— Failure of a EEE part during testing (radiation or
otherwise)

— Procurement delays (i.e., EEE part coming in too late)

— Requirements “creep” — new or improved functionality
now desired,

— Descope or requirements change,
and so on.

NASA ST-5 Spacecraft: 3D Ray Trace
courtesy NASA
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New Step: Evaluation of System
Performance Post-launch

* While not “new,” this was not in the original 1998
paper for tracking system performance in-flight.

« Useful for:
— Validating system performance such as error rates,

— Developing lessons learned that can be utilized by other
missions, and,

— Preparation for anomaly resolution.

* In an ideal world, sufficient housekeeping (thermal, power,
etc...) and environment/position/time-tagging information is
planned to aid any in resolving any anomalies that occur.

* A key is to ensure that the documentation of EEE parts and
system radiation performance expectations in-flight is
documented (i.e., ability to recover test data easily, system
validation test reports, etc...).
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Diatribe 1: Validation of Mitigation

« Mitigation of radiation effects for EEE parts occurs at
various levels ranging from:
— Hardening a transistor design to
— Adding voting logic to
— Modifying system operations.
 What is not well codified is what entails sufficient (and
statistically significant) validation of the mitigation
option(s) used.
— Consider system/board level fault-tolerance “validation”

schemes such as:
« Fault injection — May not adequately simulate the radiation effect,
or,
« Circuit modeling — There’s an old saying that “no one believes the
model, but the modeler”.

— These techniques may be adequate, but...

Bottom line: detailed consideration of adequacy of
validation must be considered.
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Diatribe 2:
Use of Standards and Guidelines

« Using standards and guidelines is desired
whenever possible.

— This includes radiation testing (e.g., MIL-STD-883
Method 1019), environment models, predictive tools,
and so forth.

— It is important to note that new technologies often are
“beyond” the guidance that currently exists in
standards and guidelines and alternate considerations
for test/analysis should be undertaken.

* A relevant example would be SEE test requirements as
presented by LaBel at HEART in 2008 [5].

[5] Kenneth A. LaBel, "Are Current SEE Test Procedures Adequate for Modern Devices and Electronics
Technologies?" http://fradhome.gsfc.nasa.gov/radhome/papers/HEARTO08 LaBel_pres.pdf, Apr. 2008.
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NASA: New Directions

NASA has a wide variety of mission types
— National assets to inexpensive CubeSats

As such, mission criticality/requirements
definition varies for EEE parts utilization
— Higher reliability (Level 1 and 2) [6] to commercial off the
shelf (COTS) used terrestrially.
The following terms apply to the next chart
— “Optional” — implies that you might get away without
this, but there’s risk involved
— “Suggested” — implies that it is good idea to do this

— “Recommended” — implies that this really should be
done

— Where just the item is listed (like “full upscreening for
COTS”) —this should be done to meet the criticality and
environment/lifetime concerns

[6] NASA Parts Policy, NPD 8730.2C, http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPD&c=8730&s=2C, Nov. 2008.
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Notional Risk Starting Point

Environment/Lifetime

Medium High
Low COTS upscreening/ Rad hard
testing recommended; | suggested. COTS
fault-tolerance upscreening/
testing
recommended;
2 fault tolerance
'¢=\s recommended
f_’_’ Medium COTS upscreening/ COTS upscreening/ Level 1 or 2, rad
= testing testing recommended; hard suggested
o recommended fault- fault-tolerance ipscreening
il rance 2 ' recommended
High Level 1o0r 2 Level 1 or 2, rad hard
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upscreening/ L in g for COTS :
testing arant design
recommended. Fault
tolerant designs for
COTS.
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Summary

In this presentation, we have provided an update
on the NASA approach to RHA for EEE parts.

We have attempted to provide a semblance of
deliverables expected and when within the space
system mission phase they should be considered.

New discussions focused on

— Ensuring proper validation of system radiation tolerance,
and,

— A caveat on only utilizing “standards/guidelines” for RHA
performance.

Lastly, a brief discussion of NASA’s emergent

philosophy regarding EEE parts usage.
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